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OSCILLATIONS IN NEUTRAL FUNCTIONAL DIFFERENTTAL EQUATIONS

Jack K. Hale

Some time ago [1l], the author announced a result on the
Fredholm alternative for the existence of periodic solutions of a non-
homogeneous linear neutral functional differential equation (NFDE).

In this paper, we indicate a proof of this result and, at the same time,
use the method of proof to give a brief survey of some recent develop-
ments in the theory of NFDE which have applications far beyound the
problem o periodic solutions.

Tet R = (-w,), R = [0,0), E° be any n-dimensional linear
vector space with norm |-|, C([a,b],En) the space of continucus func-
tions from fa,b] to E' with the topology of uniform convergence.
For e fixed r >0, let C = C([-r,0],E") with norm |g]| =
sup_r<6<o|¢(9)| for ¢ e C. If x ¢ C([c-r,a+A),En) for some A > C,
let ;;—e C, t ¢ {o,utA) be defined by xt(e) = x(t+6), -r é»é < 6.

. n . .
Let D,L. C »E  Dbe continuous linear operators,

33
1

0
] Tan(6) 1o (6)

D=D,+D
0T "1
(1)

D = 9(0) —kglAk@(-Tk),

0
D = | A(6)p(0)ds
-r

where % is an n X n matrix function of bounded variation, A(6) is

an n X n matrix integrable on [-r,0], the A are n X u conshant
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matrices with Z%k<€ A -0 as e—-0 and 0< T <r. For no-

tational purpcses, there is an n X n matrix p of bounded variation

on [-r,0] such that

- 0
@) Dp = 9(0) - J [du(6)Ip(e).

A linear hamnogeneous NFDE is a relation
(3) 4 px, = Ix, .
‘ at Tt t

A solution of (3) is a continuous function x on some interval [-r,A),

A > 0, such that Dx_ is continuously differentiable and satisfies (3)

t
on (0,A). For any ¢ € C, there is a unique solution x = x(p) of (1)
on [-r,w) such that x_ =@ and this solution is continuous in

(@,t) € ¢ x R" (see [2]). If T(t,D,L): C—oC, t e R, is defined by

\

(#) T(t,D,L)p = x, (@)

then T(t,D,L), t e R+, is a strongly continuocus semigroup of linear

transformations.

Let Cp = {p e C: Do = 0}. This is a closed subspace ci the
0

Ranach space C and T(t,DO,O)Z CD —>CD . Let the spectral radius of
0 0 -

T(t,D,0) | CDO be rDO(t) and

I

(5) )

[+
i}
H -

1n r._ (t).
Dy



The operator D, is said to be stable if a ) <O (see [8]). Note
0

that T(t,Do,O)I ¢y is nothing but the semigroup of linear trans-
0]

formations corresponding to the solutions of the homogeneous difference

equation
(6) D

The operator D, is stable if the zero solution of (é) is uniformly

asymptotically stable. Also, note that 8y = -o if Dy = ¢ (0);
0

that is, D is the operator corresponding to the usual retarded

0
functional differential equations.

For a fixed > 0, let .ﬁ; = {x e C((—w,w),En)Z x(t+w) =
x(t),t e R} and é@; = {H € C((-w,w),En)Z H{0) = O and there js an
n-vector o' and h e P with H(t) + ot + h(t)}. For any H ¢ Q%Y
H(t) = ot + h(t), h e P, we let 5] = |a] + supte[o’w]]h(t)l. The

theorem on the Fredholm alternative for periodic solutions can now be

stated as:

Theorem 1. If D. is stable, H € ﬁ%& then the equation

0
) & ok, - H(6)] = L(x,)
dt [ t - t
has a solution in E%L if and only if
’ W
(8) - [ y(s)au(s) = o
0




Lo

for all w-periodic row vector solutions y of the "adjoint" equation

d 0 0
(9) 3¢ () - [ y(t-6)au(e)] = -J y(t-6)an(e).

-r

Purthermore, there is a continuous projection operator J: ;%w - Mw
such that the set of all H satisfying (8) is (I-J)% and there is
a continuous linear operator ‘£: (LJ)%—) Qw such that %H is a
solution of (7) for each H e (I-J)& .

It is part of the conclusion of Theorem 1 that the integral
in (8) is well-defined even though H is only continuous.

It is also possible toc explicitly describe the operator J
and in doing this we will also rephrase the entire problem in terms of
the solution of an operator equation in a Banach space. This terminology
makes clear the relationship of the above theorem to the general problem

of solving functional equations.

Let A 9(1) - % be defined by

t
- Dx; - foSds.A

(10) » Ax(t) = Dx, !

It is clear that A is continuous, linear and, furthermore,
that the null space %(A) consists of the solutions of the homogeneous
equation (3) in 92) . It will be shown below that M(A) is finite
dimenzional and there is a continucus projection 8. % - % such
that Z(A) = S@w . Thecrem 1 implies there is a coutinuous projection

J. sb(/w-e &~ such that the range RA) satisfies R(A) = (I-J)%



and that A has a bounded right inverse #. Furthermore, % will be
uniquely specified if we require that J.% = 0.
If U= (9y,.--,9;) is a basis for the w-periodic solutions

of (3), V= COl(‘lIIl,...,ﬂfd) is a basis for the w-periodic solutions of

(9), and ' denotes transpose, then S,J can be defined as
-1
0 w
Sh = U}[ U'(s)U(s)ds [ U (s)h(s)ds
0 - 0
(11) Tt ® I R
JH(t) = |J V' (s)as] |[ V(s)V'(s)ds J V(s)aH(s).
0 0 0

Before proceeding to the proof of the thcorem, we remark that
Theorem 1 allows one to immediately apply the usual theory for perturted

linear systems to equations of the form

da .
(12) =t [Dxt - G(t,xt)] = Ix, + F(‘c,xt)

t

where G(-,p) € % , F(-,0) e 9':’1) for each @ € C. In fact, if we de-

fine the operatcr A as before and define N: % - % by

t
(13) Nx(t) = G(t,x.) - G(o,xo) + é F(s,xs)ds

then equation (12) has a solution x in 9{0 if end only if

(14)



which by Theorem 1 and the above remarks is equivalent to

x = Sx + H#(I-T)Nx

(15)
. JNx = O.

One can now apply the theory of [9] to obtain gufficient
conditions for the existence.of w-pericdic solutions. In particular,
if G = ea, F = e%, where é(t,m), F(t,p) are continuously differ-
entiable in @© and € 1is a real parameter, and there is a d-vector

bO such that

A(bo) = 0, det[aA(bo)/ab] # 0
A(D) = fa%(s)[dﬁ(s,U(s)b) + F(s,U(s)b)ds].
0

then there is an éo > 0 such that equation (12) has an w-periodic

solution x(bo,e), 0< el < €, continuous in e and x(bO,O) = Ub,.
We now proceed tc give two methods of proving Theorem 1, the

first method will have generzl applicability to the discussion of the

local theory of nonlinear equations and the second is applicﬁble to

more general boundary value problems. Basic to both approaches is the

following:
Lemma 1 [3]. There exists a continuous linear map V. C _>CD and a
0

family of maps Tl(t;D,L)I C - C, completely continuous for each t >0

b

such that



(16) T(t,D,L) = T(t,Do,o)w + Tl(t,D,L).

From a general result on linear operators (see [h,5]), Lemma 1

implies the following: for any fixed a > ap all elements p(t) in
. 0.

the spectrum o¢(T(t,D,L)) of T(t,D,L) with |u(t)| > 2t belong to
the point spectrum, the number of such p(t) is finite, the generalized

eigenspace of each p(t) is finite dimensional, and there exists sub-

spaces P § invariant under 7T(t,D,L) with P
P L () Fu(t) (8,0, 1) L (t)

@ ?p(t) and the spectrum of T(%,D,L) re-

finite
dimensional, C = P
’ u(t)
stricted to Pu(t) is o(T(t,D,L))\(n(t)}.
If D0 is stable, then, in particular, there can be only a
finite number of elements of the point spectrum of T(t,D,L) with

modulii equal to one. Thus, there can be at most a finite number of

w-periodic solutions of (3) and this implies the existence of the pro-

Pf%b.

jection operator P mentioned above with -%XA)

Furthermore, D, stable implies only a finite number of ele-

0
ments of the point spectrum of T(t,D,i) with modulii greater than or
equal to one. The theory in [2] now implies one can decompose C as
C=P®Q where P,Q sare invariant under T(t,D,L), o(T(%,D,L)|Q) =
o(z(t,D,L)) N {A! |A] <1}, P finite dimensional and P,Q are de-
termined in the following manner. A number A is said to be a
characteristic value of (2) if

0 0
(17) det A(A) = 0, AN =AlT - ekedu(eg} _ [ eMan(e).

- -



Let Dy be stable, A = (A: det A(A) = O, Re A >0} and @ = @5,
be a basis for the initial values of all solutions of (3) of the form
)kt
2 pk(t)e > M € A, pk(t) polynomials in t, and ¥ = col(wl,...,wp)
a basis for the corresponding solutions of the adjoint equation (9) of

_)\kt

the form 2. qk(t)e s M €4, qk(t) polynomials in t. Let

0 6

(@) = a(0)p + f ‘é afe-6)[au(e)Je(e)at

0 6
-/ (f)a(g-e)[dn(e)lw(é)dg

and (¥,0) = (Wj,mk), j,k=1,2,...,p. Then (¥,0) is nonsingular and

mey be taken to be the identity. It follows from [2] that

C=PF ®Q
(18) P

{p eC. 9 = ¢a for smme p-vector a}

L
ll

- {p e cl (¥,9) = 0}.

P . Q
Q: ¢ = q>(\y,(p)_, ¢ =

)2
Thus, any @ € C can be written as ¢ = 9" + ¢
P

¢ -9 eQ.

Since P is invariant under T(t,D,L), there is a p X p
constant matrix E, o(E) = A such that T(t,D,L)¢ = 0e"C, Also, from
n E6
[21, o(8) = 2(0)e™, -r < 6 < 0.

Another fact that is needed is the variation of constants
formula. It is shown in [6] that there is an n X n matrix X(t),

-o < t < o, of bounded variation, continuous from the right, X(t) = C,

t <0, X(0) = I satisfying




t
D(Xt) =f L(xs)ds +I, £>0
0
. def s .
such that, if X = T(t)XO, the initial value problem for (7) is
equivalent to
% o
(19) X, = T(t)p + [ T(t-s)XodH(s).
0

-

. P _ y _ Q _ _
If one now defines X, = @(Y,Xo) = 0¥(0), X5 = %g - Xg, then x =

oy (t) + x% implies

%t‘ [y(t) - ¥(O)H(t)] = Ey(t) L
(20)

% .
xg' = T(t,D,L)o% + (j; T(t-5,D,L)X3H(s)

U - - S Qe e

where all integrals are to ﬁerin%érpreteﬁ"as regular Eﬁtégfals in“ 5
for each 6 in [-r,0].
Since the spectrum of T(t,D,L)|Q lies inside the unit

circle, there are positive constants X,a such that |[T(t,D,L)|Q| <

-t

Ke t > 0. Therefore, it follows from [6] that one can also suppose

s v 2
K,a are such that ]T(t,D,L)Xgl < Ke'om, t > 0. Thus, there is a

Q

unique @ = @Q(H) continuous and linear in H such that the solution

Q
t

ot + h(t), € E", h e P, end z(t) = y(t) - ¥(0)n(t) in the first

x, of the second eguation in (20) is w-periodic in t. If H(t) =

equation of (20), then the existence of an w-periodic solution is:

equivalent to the existence of an w-periodic solution of the ordirnary
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differential equation

dz(t)
dt

(21) = Ez(t) + E¥Y(0)h(t) + ¥(0)a.

A necessary and sufficient condition for the existence of an w-periodic
solution of (21) is well-known from ordinary differential equations.
Checking this condition and proceeding as in [10] for retarded functional
differential equations, one éompletes the proof of Theorem 1.

A second proof can be obtained from the general theory of two
point boundary-value problems developed in [7]. We summarize the theory
for the autonomous case although the nonautonomous case is also treated
in [7].

For the statement of the principal results on boundary value
problems, some care is needed in the specification of the continuity
properties of the functions n,pn in (1), (2). Without loss in
generality, one can suppose both 17,y are continuous from the left
on (-r,0), vanish on [0,®) and are equal to their values at & = -r
on (-e,-r]. Let B, be the space of functions V: [-1,0] - E™ (the
space of n-dimensional row vectors) which are of bounded variation on
[-r,0], continuous from the left on (-r,0) and V¥(0) = 0. We identify
B

o with the conjugate space of C with the pairing

0
(V) = [ [av(e)le(e), v € By, 9cC.
-

With i,n normalized as above, the adjoint equation (9) as
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an equation for functions of bounded variation can be written as
c . o
(22) y(s) - | [ay(a)Iu(s-0) + | y(a)n(s-a)da = constent.
s s

It is then not difficult to prove that for any t e R, ¥ ¢ BO’ there

is a unique y: R —aEn* of bounded variation on finite intervals,
continuous from the left such that Yy = ¥, ¥ vanishes on [t,e) and
(22) nolds for s <t-r. If this solution is denoted by y(t,¥) and
yg(e) = y(s+8), -r < 6 <0, yg(o) = 0, then yg(t,w) € B, for each

s < t.

Let Q- Bo —>BO be the quasinilpotent operator defined by

0 0
(23)  av(e) = é [a¥(B)In(e-B) + é v(B)n(e-p)ap, -r <6 <0, Ve B,

Suppose V is a Banach.space, 0 < T are given real numbers
M,Nt C -V are linear operators with domain dense in C and 7y eV
is fixed. Let V* be the conjugate space of V and M¥,N* +the ad-
joint operatcrs of M,N, respectively. The boundary value problem (1)

is to find a solution of (7) satisfying
(2&) ng + NXT = 7.

Theorem 2. For boundary value problem (I) to be solvable, it is

ﬂecessary that



T -
(25) [ y(s)au(s) = ~(¥,7)y
o

for all solutions y,¥ of the adjoint problem: V¥ € V*, y satisfies
the adjoint equation (22) on [o-r,T-r] and zg = (I+Q)—1M*W,
zg = (I+n)']1\1*qf.

If R(MNT(t-0)) is closed in YV, this condition is both
necessary and sufficient.

To apply this result to the proof of Theorem 1, let V = C,
M=.N=1I, vr=0,0=0, T=w The boundary value problem (I) is
then to find a solution of (7) with x. = x - To show A(1-T{w,D,L))

0

is closed observe from Lemma 1, that I - T(w,D

@, 0,0}V has an inverse

50 that
I - T(w,D,L) = [I-T(w,Do,o)qr] [I - -(I-T(w,Do,o)w)'lTl(w,D,L)].

Since Tl(a5D,L) is completely coutinuous, it follows that this range

is closed. Thus, (8) is necessary and sufficient for the existence of

an w-periodic solution of (7). This characterizes the range of the operator

A in (10). Since it also is shown in [T] that the dimension of the space of
w-periodic solutions of the adj01qt equation is the same as the dimension of

the space of w-periodic solutions of (3) and, thus, is finite, there exists

a continuous projection operator Jlégb-ﬁ\ﬁg; such that R(A) = (I-J)Qg&.

t follows that A has a bounded right inverse % and Theorem 1 is

proved.
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Lot S WY
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Incidentally, the above argument applies equally as well to
show that M + NT(a¥DO,O) nonsingular implies R(M+NT(w,D,L)) is

closed.
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